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4 Enumeration / Combinatorics / Counting

There are many probability problems, especially those concerned
with gambling, that can ultimately be reduced to questions about
cardinalities of various sets. Combinatorics is the study of sys-
tematic counting methods, which we will be using to find the car-
dinalities of various sets that arise in probability.

4.1 Four Principles
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4.1. Addition Principle (Rule of sum):

e When there are m cases such that the ith case has n; options,
for i =1,...,m, and no two of the cases have any options in
common, the total number of options is ny + ny + - -+ + ny,.

e In set-theoretic terms, suppose that a finite set .S can be par-
titionedﬂ into (pairwise disjoint parts) S1,S9, ..., Sy,. Then,

S| = |S1] + |Se| 4+ -+ + |G-

5The art of applying the addition principle is to partition the set S to be counted into
“manageable parts”; that is, parts which we can readily count. But this statement needs to
be qualified. If we partition S into too many parts, then we may have defeated ourselves.
For instance, if we partition S into parts each containing only one element, then applying the
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In words, “if you can count the number of elements in all of
the parts of a partition of S, then |S| is simply the sum of the
number of elements in all the parts”.

Example 4.2. We may find the number of people living in a coun-
try by adding up the number from each province/state.

Example 4.3. [1, p 28] Suppose we wish to find the number of
different courses offered by SII'T. We partition the courses accord-
ing to the department in which they are listed. Provided there is
no cross-listing (cross-listing occurs when the same course is listed
by more than one department), the number of courses offered by
SIIT equals the sum of the number of courses offered by each de-
partment.

Example 4.4. 1, p 28] A student wishes to take either a mathe-
matics course or a biology course, but not both. If there are four
mathematics courses and three biology courses for which the stu-
dent has the necessary prerequisites, then the student can choose
a course to take in 4 + 3 = 7 ways.

Example 4.5. Let A, B and C' be finite sets. How many triples
are there of the form )we A, be B, c cC?
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4.6. Tree diagrams: When a sample can be cdnstructed in sev-
eral steps or stages, we can represent each of the n; ways of com-
pleting the first step as a branch of a tree. Each of the ways
of completing the second step can be represented as ns branches

addition principle is the same as counting the number of parts, and this is basically the same
as listing all the objects of S. Thus, a more appropriate description is that the art of applying
the addition principle is to partition the set S into not too many manageable parts.[Il p 28]
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starting from the ends of the original branches, and so forth. The
size of the set then equals the number of branches in the last level
of the tree, and this quantity equals

Ny X ng X -«
4.7. Multiplication Principle (Rule of product):

e When a procedure/operation can be broken down into m
steps,
such that there are n; options for step 1,
and such that after the completion of stepi—1 (i = 2,...,m)
there are n; options for step i (for each way of completing step
i—1),
the number of ways of performing the procedure is nins - - - n,,.

e In set-theoretic terms, if sets S1,S5,...,.5,, are finite, then
‘Sl XSQ Xoeee xSm\ = ‘Sl| X ‘S2| X - X ‘Sml

e For m finite sets Ay, A, ..., A, there are |Ay| X [Ag| X -+ X
| A;| m-tuples of the form (aq, as, .. ., a,,) where each a; € A;.

Example 4.8. Suppose that a deli offers three kinds of bread,
three kinds of cheese, four kinds of meat, and two kinds of mustard.
How many different meat and cheese sandwiches can you make?

First choose the bread. For each choice of bread, you then
have three choices of cheese, which gives a total of 3 x 3 = 9
bread/cheese combinations (rye/swiss, rye/provolone, rye/ched-
dar, wheat/swiss, wheat/provolone ... you get the idea). Then
choose among the four kinds of meat, and finally between the
two types of mustard or no mustard at all. You get a total of
3 x 3 x4 x 3 =108 different sandwiches.

Suppose that you also have the choice of adding lettuce, tomato,
or onion in any combination you want. This choice gives another
2 x 2 x 2 = 8 combinations (you have the choice “yes” or “no”
three times) to combine with the previous 108, so the total is now
108 x 8 = 864.

That was the multiplication principle. In each step you have
several choices, and to get the total number of combinations, mul-
tiply. It is fascinating how quickly the number of combinations
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grow. Just add one more type of bread, cheese, and meat, respec-
tively, and the number of sandwiches becomes 1,920. It would take
years to try them all for lunch. [I7, p 33]

Example 4.9 (Slides). In 1961, Raymond Queneau, a French poet
and novelist, wrote a book called One Hundred Thousand Billion
Poems. The book has ten pages, and each page contains a sonnet,
which has 14 lines. There are cuts between the lines so that each
line can be turned separately, and because all lines have the same
rhyme scheme and rhyme sounds, any such combination gives a
readable sonnet. The number of sonnets that can be obtained in
this way is thus 10" which is indeed a hundred thousand billion.
Somebody has calculated that it would take about 200 million
years of nonstop reading to get through them all. [17, p 34]

Example 4.10. There are 2" binary strings/sequences of length
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Example 4.11. For a finite set A, the cardinality of its power set
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Example 4.12. (Slides) Jack is so busy that he’s always throwing
his socks into his top drawer without pairing them. One morning
Jack oversleeps. In his haste to get ready for school, (and still a
bit sleepy), he reaches into his drawer and pulls out 2 socks. Jack
knows that 4 blue socks, 3 green socks, and 2 tan/ socks are in his
drawer.

(a) What are Jack’s ut 2 blue socks to
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(b) What are the chances that he pulls out a pair of matching
SOCkS? Mﬁfc)\;ab E\ve socles

/ /M'I‘ch ay :an'.cv\ ’OC-l'ls
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Example 4.13. [I, p 29-30] Determine the number of positive
integers that are factors of the number

3t x 52 x 117 x 138,

The numbers 3,5,11, and 13 are prime numbers. By the funda-
mental theorem of arithmetic, each factor is of the form

3" x 5 x 11¥ x 137,

where 0 <i<4,0<7<2 0<k<7,and 0 < /¢ < 8. There are
five choices for 7, three for j, eight for k, and nine for /. By the
multiplication principle, the number of factors is

H X 3x8x9=1080.

4.14. Subtraction Principle: Let A be a set and let S be a

larger set containing A. Then st minvs S ~
T o
[Al = 15| =[S\ 4] &2

e When S is the same as €2, we have |A| = || — |A¢|

e Using the subtraction principle makes sense only if it is easier
to count the number of objects in S and in S\ A than to )a)=)s)- 1S \A)

count the number of objects in A. - 20 -1

Example 4.15. C’hevalzer de Mere s Scandal of Arithmetic: =1
A = the event +|Ml"‘ we have no six

Which 1széore likely,_obtaining at least one six in 4 tosses ‘~ “
’ic‘.

of a fair dice (€vent j} or obtaining at least one double s S “?

six in 24 tosses of a pair of dice (event B)? N £2lc
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We have

64 — 54 5\*
P(A) = - :1_<6) ~ 518

e 3624 — 35% 35\ %
P(B) = 3@ - 1— (%> ~ .491.
Therefore, the first case is more probable.

Remark 1: Probability theory was originally inspired by gam-
bling problems. In 1654, Chevalier de Mere invented a gambling
system which bet even money on event B above. However, when
he began losing money, he asked his mathematician friend Pas-
cal to analyze his gambling system. Pascal discovered that the
Chevalier’s system would lose about 51 percent of the time. Pas-
cal became so interested in probability and together with another
famous mathematician, Pierre de Fermat, they laid the foundation
of probability theory. [U-X-L Encyclopedia of Science]

Remark 2: de Mere originally claimed to have discovered a
contradiction in arithmetic. De Mere correctly knew that it was
advantageous to wager on occurrence of event A, but his experience
as gambler taught him that it was not advantageous to wager on
occurrence of event B. He calculated P(A) = 1/6 +1/6 +1/6 +
1/6 = 4/6 and similarly P(B) = 24 x 1/36 = 24/36 which is
the same as P(A). He mistakenly claimed that this evidenced a
contradiction to the arithmetic law of proportions, which says that
% should be the same as %. Of course we know that he could not
simply add up the probabilities from each tosses. (By De Meres
logic, the probability of at least one head in two tosses of a fair

coin would be 2 x 0.5 = 1, which we know cannot be true). [21, p
3]

4.16. Division Principle (Rule of quotient): When a finite

set S is partitioned into equal-sized parts of m elements each, there

are 151 arts
m b :

SEven money describes a wagering proposition in which if the bettor loses a bet, he or she
stands to lose the same amount of money that the winner of the bet would win.

Ex. Svppoe ne have a voom of 20 students.
An exercite i- coﬂc‘ua-'l'od in tjrou{o of three pesgons.

How omy/ UrOuf; are ‘5884?



4.2 Four Kinds of Counting Problems

4.17. Choosing objects from a collection is called sampling, and
the group/list /sequence of the chosen objects are known as a sam-
ple. The four kinds of counting problems (and their corresponding

formulas) are ’ 34|: Assume we have n ALt qui-hable e
) are [0, p 34] 9 f (resetibion

(a) Ordered sampling of r out of n ordered w/ veplacement

items with replacement: n"; \l

sam ‘iq /
P93
(b) Ordered sampling of < n out of /s AN

n items without replacement: (n),; orerdeved w/o replacement

(¢) Unordered sampling of r < n out of
n items without replacement: (:f),

(d) Unordered sampling of r out of n
items with replacement: ("J“:_l).

e See [4.36] for “bars and stars”

argument.
Many counting problems can be simplified /solved by realizing

that they are equivalent to one of these counting problems.

4.18. Ordered Sampling: Given a set o '
select a distinc y sequence (word) of length r drawn from

@ sampling with replacement: pz = n"

e Ordered sampling of r out of n items with replacement.

e The “with replacement” part means “an object can be
chosen repeatedly.”

e Example: From a deck of n cards, we draw r cards with
replacement; i.e., we draw a card, make a note of it, put
the card back in the deck and re-shuffle the deck before
choosing the next card. How many different sequences of
r cards can be drawn in this way? [9, Ex. 1.30]

"Different sequences are distinguished by the order in vs_/‘bich we choose objects.
v oT Thee

,\:_ .
\ )
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(b) Ordered sampling without replacement:
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e Ordered sampling of » < n out of n items without re-
placement.

e The “without replacement” means “once we choose an
object, we remove that object from the collection and we
cannot choose it again.”

e In Excel, use PERMUT (n,1).

e Sometimes referred to as “the number of possible r-permutations
of n distinguishable objects” 2

3
e Example: The numbef of sequencedﬂ of size r drawn from
an alphabet of size n without replacement.

(3)2 = 3 x 2 = 6 is the number of sequences of size 2
drawn from an alphabet of size 3 without replacement.

Suppose the alphabet set is {A, B, C}. We can list all
sequences of size 2 drawn from {A, B, C} without re-

placement: 1€ we consider uvnordesed so...-.\,):nj
Lwi'}-\neu"' re.f]acefv\m'} )/ 'o/

roue
Sa""\‘ 5 o d..‘/;s;oﬂ Priog;F]C
gCarn ¢ tou, 6
v %jroups >N 3
=6
sCnng rouf

e Example: From a deck of 52 cards, we draw a hand o@
cards without replacement (drawn cards are not placed
back in the deck). How many hands can be drawn in this
way”?

8Elements in a sequence are ordered.

GLX51R50x4qxq g = (‘52)5.



e For integers r,n such that r > n, we have (n), = 0.

e We define (n)y = 1. (This makes sense because we usually
take the empty product to be 1.)
o (n) =
® (n); = (n—(r—1))(n),—1. For example, (7)5 = (7—4)(7)4.
1, ifr=1
'“%_{o,ﬁr>1

e Extended definition: The definition in product form

e =[[n=i)=p (=1 (= (r—1)

7

I
o

r terms

can be extended to any real number n and a non-negative
integer 7.

Example 4.19. (Slides) The Seven Card Hustle: Take five red
cards and two black cards from a pack. Ask your friend to shuffle
them and then, without looking at the faces, lay them out in a row.
Bet that them cant turn over three red cards. The probability that
they %\T do it is

\«x) (), PxpxB T
Definition 4.20. For any integer n greater than 1, the symbol n!,
pronounced “n factorial,” is defined as the product of all positive

integers less than or equal to n.

V"! =nix(n-Dxn-2)x --- x 2 x1

(a) 0l=11=1
4l = 4x3x2%1= 24

(b) n! =n(n—1)! e

o s2l = 10
(¢) nl= [e't"dt
0

(d) Computation:
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(i) MATLAB: Use factorial(n). Since double precision num-
bers only have about 15 digits, the answer is only accurate
for n < 21. For larger n, the answer will have the right
magnitude, and is accurate for the first 15 digits.

(ii) Google’s web search box built-in calculator: Use n'!

(e) Approximation: Stirling’s Formula [5, p. 52]:
n! & V2rnn"e ™" = ( 27re) elmt3)In(z), (2)

In some references, the sign ~ is replaced by ~ to emphasize
that the ratio of the two sides converges to unity as n — oo.

4.21. Factorial and Permutation: The number of arrange-
ments (permutations) of n > 0 distinct items is (n), = nl.

e Meaning: The number of ways that n distinct objects can be
ordered.

o A special case of ordered sampling without replacement
where r = n.

e In MATLAB, use perms(v), where v is a row vector of length
n, to creates a matrix whose rows consist of all possible per-
mutations of the n elements of v. (So the matrix will contain
n! rows and n columns.)

Example 4.22. In MATLAB, perms ([3 4 7]) gives

(743  al=2x2x1 - pevms (L2 > 73)
(734 s+l lisks
7473 2?33
7437 31313
347 3 73
374

233

%37

DF3
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T
Similarly, perms (’abcd’) gives ql =24

dcba dcab dbca dbac dabc dacb
cdba cdab cbda cbad cabd cadb
beda bead bdca bdac badc bacd
acbd acdb abcd abdc adbc adcb

Example 4.23. (Slides) Finger-Smudge on Touch-Screen Devices

Example 4.24. How many people do you need to assemble before
the probability is greater than 50% that some two of them have
the same birthday (month and day)?

Assumptions:

e Birthdays consist of a month and a day with no year attached.
e Ignore February 29 which only comes in leap years.

e Assume that every day is as likely as any other to be someones
birthday.

Probability of coincidence birthday: Probability that there is
at least two people who have the same birthdayin a group of r
persons:

v
'f’-—] = 365
Of(os-.'it care . nore has twe same gD
|A€] = 3652 detx - = (2e5) = 363!
’ v (2e5-r)!

r ferms 1° PLA®)

¢ o~
piay < 1A L lel=1A) Ty 0,
|2\ 1<) )2 3¢5

It is surprising to see, in Figure [0, how quickly the probability
approaches 1 as r grows larger.
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py(n.n) for n = 365
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Figure 6: p,(n,r): The probability of the event that at least one element appears
twice in random sample of size r with replacement is taken from a population
of n elements.

Birthday Paradoxz: In a group of 23 randomly selected peo-
ple, the probability that at least two will share a birthday (assum-
ing birthdays are equally likely to occur on any given day of the
yeal@ is about 0.5.

e At first glance it is surprising that the probability of 2 people
having the same birthday is so largﬂ, since there are only 23
people compared with 365 days on the calendar. Some of the
surprise disappears if you realize that there are (23) = 253

2
pairs of people who are going to compare their birthdays. [3),

p. 9]
Remarkd )

e With 88 people, the probability is greater than 1/2 of having
three people with the same birthday.

e 187 people gives a probability greater than 1/2 of four people
having the same birthday.

9In reality, birthdays are not uniformly distributed. In which case, the probability of a
match only becomes larger for any deviation from the uniform distribution. This result can
be mathematically proved. Intuitively, you might better understand the result by thinking of
a group of people coming from a planet on which people are always born on the same day.

10Tn other words, it was surprising that the size needed to have 2 people with the same
birthday was so small.

[Rosenhouse, 2009, p 7], [E. H. McKinney, “Generalized Birthday Problem”: American
Mathematical Monthly, Vol. 73, No.4, 1966, pp. 385-87.]
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Example 4.25. Another variant of the birthday coincidence para-
dox: The group size must be at least 253 people if you want a
probability > 0.5 that someone will have the same birthday as

you. [3, Ex. 1.13] (The probability is given by 1 — (%)r.)

|..Q.] = 355"‘ 36t
365

Opfosite case :mone of Hhem ihaces your BD 103(%1 )<lo3

At Reicialoiiie. Ay e’ > leg(v2) o asp.¢5
v toms ) ooy (34 /365D
- L3 »
P(A):L{l"_‘_"_l_l.é].,1__lﬁil=1_%1 _ _(3!.%) So.5
A 12 365"

e A naive (but incorrect) guess is that [365/2] = 183 people
will be enough. The “problem” is that many people in the
group will have the same birthday, so the number of different
birthdays is smaller than the size of the group.

e On late-night television’s The Tonight Show with Johnny Car-
son, Carson was discussing the birthday problem in one of his
famous monologues. At a certain point, he remarked to his
audience of approximately 100 people: “Great! There must
be someone here who was born on my birthday!” He was off
by a long shot. Carson had confused two distinctly different
probability problems: (1) the probability of one person out of
a group of 100 people having the same birth date as Carson

'77

himself, and (2) the probability of any two or more people out
of a group of 101 people having birthdays on the same day.
[21], p 76]

4.26. Now, let’s revisit ordered sampling of r out of n different
items without replacement. One way to look at the sampling is to
first consider the n! permutations of the n items. Now, use only
the first r positions. Because we do not care about the last n —r
positions, we will group the permutations by the first r positions.
The size of each group will be the number of possible permutations
of the n — r items that has not already been used in the first r
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positions. So, each group will contain (n — r)! members. By the
division principle, the number of groups is n!/(n — r)!.

4.27. The number of pelg{}‘l%tations ofmn=mn+ny+---+n,

objects of which ny are of ere type, ny are of the second type, ns
are of the third type, ..., and n, are of the rth type is

( n ) n!
N1, N2,y . e .y Ny ni'ng! -+ n,!

Example 4.28. The number of permutations of AABC
( ‘1‘) _al _
= = =12
21,1 201

s 7

Example 4.29. The number of permutations of AAABC

S )= -5—‘}.':5*".‘20
3,11 3111q)

Example 4.30. The number of permutations of AABBCC

27 27
2/
( * ): l !' j::'2.tCJ
27219
?_/2)3

Example 4.31. Bar Codes: A part is labeled by printing with
four thick lines, three medium lines, and two thin lines. If each
ordering of the nine lines represents a different label, how many
different labels can be generated by using this scheme?
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4.32. Binomzal coefficient:

(n-: r) - (7;) - (Z') ~(n —nin)!r! ; -

o~

\
I
(a) Read “n choose r”. !
\
1

—
—— -_—-

—

541

(b) Meaning;:

(i) Unordered sampling of r §@)ut of n distinct items
without replacement

ordeved S&M()'ra.s withoot are../lach&wJ('

]
_____ 2 (n), = o
————— L r Lr‘__f)\

Unofclefc,d > (h)r‘j— ~) E(?)

r!'  (n-n)lvl

(ii) The number of subsets of size r that can be formed from
a set of n elements (without regard to the order of selec-
tion).

(iii) The number of combinations of n objects selected r at a
time.

(iv) the number of r-combinations of n objects.
(v) The number of (unordered) sets of size r drawn from an
alphabet of size n without replacement.

¢) Computation:
(c) p

(i) MATLAB:

e nchoosek(n,r), where n and r are nonnegative inte-
gers, returns (Z)

e nchoosek(v,r), where v is a row vector of length n,
creates a matrix whose rows consist of all possible
combinations of the n elements of v taken r at a time.
The matrix will contains (Z) rows and r columns.
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sel
(‘n.!)"r

15'13‘13‘13)

I'-r
Pt =

o Example: nchoosek(’abcd’,2) gives
ab (u\- = __-} -5 Foss’rb\li‘}'in
ad
be
bd
cd
(11) Excel: combin(n,r)
iii) Mathcad: combin(n,r)
) Maple: ()
(v) Google’s web search box built-in calculator: n choose r

(d) Reflection property: (n) = ( " )

r n—r/"’

= 0if n <r or r is a negative integer.
(h) max (7) = (jaf))-

Example 4.33. In bridge, 52 cards are dealt to four players;
hence, each player has 13 cards. The order in which the cards
are dealt is not important, just the final 13 cards each player ends

up with. How many different bridge games can be dealt? (Answer:
53,644,737,765,488,792,839,237,440,000)

- it M al asl
(_ 15 ‘,5;57;1 2chn) Bl gt

\ A\ ‘

{ v
| | o! =1
H-..——\-——-'_"‘—‘\,-—_--"wlh—-\f-_-' .2-1(’1_-1 )37_
r‘n,vert p}a}fe/z P'aye,.r.'; plﬂyef ~ :
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4.34. Unordered sampling with replacement: There are
n items. We sample r out of these n items with replacement.
Because the order in the sequences is not important in this kind
of sampling, two samples are distinguished by the number of each
item in the sequence. In particular, suppose r letters are drawn
with replacement from a set {ai, as, ..., a,}. Let x; be the number
of a; in the drawn sequence. Because we sample r times, we know
that, for every sample, x; + 29 + - - - x,, = r where the x; are non-
negative integers. By the bars-and-stars argument below, there

are (”Jr;_l) possible unordered samples with replacement.

Example 4.35. Suppose the items are four different letters A,B,C,D
(n =4). We sample r = 8 out of these n items with replacement.
The ow]y 'nmpor'l’a“']‘ indo.

|o.m‘ WOUI(J l9 » CCABCA
A ple e 3 i % each f),fg.

Thi i, the some e AABBRCCEC
Let 2, =3 A in t sawple

®, =% B in e sampe

3wd“5 ¢ 13“ e =»‘C‘ "
/J\ l( “‘p Z%D
acAfoCB-l-a’.c-l-atD:B' 4_"‘ =165
g! 3\

Example 4.36. The bars-and-stars argument: Find all non-

negative integers x1, T, r3 such that 1
1

r1+ 19 + 13 = 3.

0 1 2 )
+ 1+ 1alat 11

0+0+3 Llaiga l
1 I

04+2+1

0+3+0

1+0+2

1+1+1 5!
14240 1114 2! !
240+ 1

24140

34+40+0

We see that any such configuration stands for a solution to the
equation, and any solution to the equation can be converted to
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such a walls-ones series. So we’ve established a bijection between
the solutions to our equation and the configurations of two walls
and three ones. So our problem reduces to “in how many ways
can we place two walls and three ones in five places?” We can do

this in (g) ways. So the number of solutions to our equation is

5
(5) = 10.
Example 4.37. Consider the equation

Tt @+ g+ -+ amy=1D e
3

where 1, z9, T3, ..., T19 are nonnegatiye integers. How many solu-
tions does this equation have?

9 walls
24!
q! 15!

4.38. Summary and Extension: There are (7””;‘_1) = (”7;7:1)
distinct n-tuples (x1, z, . .., z,) of nonnegative integers such that
T+ To+ -+ Ty =T. n-1 walls (:-_1_'_-{_)_‘__

v 1'a -1 v

e We use n — 1 walls to separate r 1’s.

e This is the same as the number of ways to place r indistin-
guishable balls into n labeled urns.

(a) Suppose we further require that the z; are strictly positive
(x; > 1), then there are (7"_1) solutions.

n—1

(b) Extra Lower-bound Requirement: Suppose we further
require that x; > a; where the a; are some given nonnegative
integers, then the number of solution is

r—(a+ar+---+a,) +n—1
n—1 '

Note that here we work with equivalent problem: y; + y2 +
"'+yn:T—Z?:1&i where Yi > 0.
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Example 4.39. Suppose words that are anagrams are considered
the same. How many ways are there to choose a 5-letter word from
the 26-letter English alphabet with replacement?

Observe that since anagrams are considered the same, the fea-
ture of interest is how many times each letter appears in the word
(ignoring the order in which the letters appear). To translate this
into a stars-and-bars problem, we consider writing “5” as a sum of
26 integers ny,np,...,nz where ny is the number of times letter
A is chosen, np is the number of times letter B is chosen, etc.

Then by (4.38)), the number of 5-letter words is

5426 — 1 30
~ — 142, 506.
(75 )= ()

4.40. For the “unordered sampling with replacement” calculation,

it is tempting to start with the formula n" for the “ordered sam-
pling with replacement” case and then change to the “unordered
sampling” case by X% via the division principle. (This was, after
all, the technique that we used back when we considered “sampling
without replacement” in [4.32]

However, turn out that the same technique can’t be applied
here. This is because one key requirement for applying the divi-
sion principle is that each group should contain the same number
of member. When we did the “sampling without replacement”,
we are guaranteed to have r distinct objects. However, when the
sampling is with replacement, some objects may be chosen more
than once. We have already seen, in [4.27], that the number of pos-
sibilities when permuting r objects that are not all distinct is not
r!. More importantly, the numbers of possibilities are different de-
pending on how many repeated objects in each type. So, there are
various group sizes invalidating the application of division princi-
ple.

For example, suppose we have two object types: A and B. Let’s
select two objects using “unordered sampling with replacement”.
There are three possibilities: AA, AB, and BB. (Note that BA is
the same as AB because the sampling is unordered.) If we start
with “ordered sampling with replacement”, we have four possibil-
ities: AA, AB, BA, and BB. Grouping these possibilities using
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permutation, we have three groups: {AA}, {AB,BA}, {BB}. As
mentioned earlier, the group sizes are not the same and therefore
we can’t directly apply the division principle.

Two object types: A and B. Sample two objects with replacement.

Ordered Sampling Unordered Sampling

4 possibilities 3 possibilities
A group 1
it —
; AB : group 2 . AB
I\B_A_I group 3 BB
MR~

Figure 7: Division principle can’t be applied easily to convert the formula for
“ordered sampling with replacement” to the formula for “unordered sampling
with replacement.”

4.41. Summary:

(a) Four Principles:

g * Addition Principle (Rule of Sum): Suppose that a finite set h

can be partitioned into (disjoint parts) S1, S7, ..., Sy Then,
S| = 1S1] + 1S2] + -+ [Sml.
® Multiplication Principle (Rule of Product): For finite sets
Sl’ 5‘2, ) Sm, Carteslan l)r()(lucls
S1 X Sy X oo X S| = [S1] X [Sg] X -+ X [ S .
* Subtraction Principle: Let A be a set and let S be a larger set
COIltaiIlil’lg A . Then W set minus
|A] = |S] — IS\AI.
In particular, |A| = |2| — |A®].
* Division Principle (Rule of Quotient): When a finite set S is
— partitioned into equal-sized parts of M elements each, there
are |S|/m parts.

(b) Four Kinds of Counting Problems:
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° Choosing r objects from a collection of n distinct objects is
called sampling.

® The group/ list/ sequence of the chosen objects are known as

()n(’C we L‘hOOSC an Ob.(‘('l we remove
a sample. ject,

An object can be that object from the collection and we

chosen repeatedly. cannot choose it again.

with without
A sample is a replacement replacement

sequence/ list/ word.

Different samples are n!

dlstmgmshod by the Ordered sam p|lng n r ( (

order in which we |
v

choose objects.

The order of the . n+r-1
clementsis | Unordered sampling

irrelevant.

4.3 Binomial Theorem and Multinomial Theorem

4.42. Binomzial theorem: Sometimes, the number (:f) is called
a binomaial coefficient because it appears as the coefficient of
x"y"" in the expansion of the binomial (z+v)". More specifically,
for any positive integer n, we have,

- - l o (z4+y)" = z”: (Z) "y (3)

ey r=0

-
ﬁor example, \'

3'”’ V4

qive * 3 3 3 3
(x+1y)° = (B)x?’—l— <2>x2y+ (1>xy2—|- (0>y3
3 3
=2+ (2>x2y+ (l)ny—i-y?’

= 2% + 32y + 3xy” + o>

To see why this is true, we will first try to directly multiply the
sums. However, to keep track of the variables, let’s first treat them
as distinct as shown in Figure[§. Under such consideration, observe
that expansion converts a product of sums into a sum of products.
Each resulting product contains a term in the first sum, a term in
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the second sum, and a term in the third sum. All the products
have unit coefficient. Product terms of the form 23, 2%y, zy?, and
y? arise after we try to convert x;, s, z3 back to x and 1, 2, y3
back to y. Some product terms are the same and hence can be
combined resulting in the non-unity coefficients.

(% + Y1) (% +Y,)
= XX XY, Y% VY,
(X + Y1) % (% +Y,) % (X +Y5)
= XX Xg + XX Y3 + X Yo Xs + XY, Vs + YiXoXs + YiXo Vs + YiYoXs + VYo Ys

l ! X =X, =X, =X
Yi=Y,=Y;=Y
(x+y)x(x+y)
= XX+ XY + VX + VY = X2+ 2Xy + V°

(X+y)x(X+y)x(x+Y)
= XXX + XXY + XYX + XYY + YXX + YXY + YyX + yyy

= x> +3xX°y +3xy° + y°

Figure 8: Binomial expansion: when treating all variables as distinct, in the sum
of products, we have a term from each sum that are multiplied in the original
expression.

The expansion of (z + y)> can be found using combinatorial
reasoning instead of multiplying the three terms out. When (x +
y)? = (z +y)(z +y)(r +vy) is expanded, all products of a term in
the first sum, a term in the second sum, and a term in the third
sum are added.

To obtain a term of the form x°, an x must be chosen in each
of the sums, and this can be done in only one way. Thus, the z*

3

term in the product has a coefficient of 1. To obtain a term of
the form 22y, an z must be chosen in two of the three sums (and
consequently a y in the other sum). Hence, the number of such
terms is the number of 2-combinations of three objects, namely,
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(g) . Similarly, the number of terms of the form xy? is the number of
ways to pick one of the three sums to obtain an z (and consequently
take a y from each of the other two terms). This can be done in
(:1)’) ways. Finally, the only way to obtain a y> term is to choose
the y for each of the three sums in the product, and this can be

done in exactly one way. Consequently. it follows that

3 3
e (e (oo

Now, let’s state a combinatorial proof of the binomial theorem
. The terms in the product when it is expanded are of the form
x"y" " forr =0,1,2,...,n. To count the number of terms of the
form z"y"~", note that to obtain such a term it is necessary to
choose 7 xs from the n sums (so that the other n — r terms in the
product are ys). Therefore. the coefficient of x"y" ™" is (:f)

4.43. From , if we let x = y = 1, then we get another important

identity: )
> (1) -2 (@)

One interpretation of is to think about the size of a power
set. Consider a set A with n (distinct) elements. We have seen
in 4.32| that A has (Z) subsets of size r. Therefore, the sum on
the left in is trying to count the number of all possible subsets
of A. In other words, the sum gives the size of the power set of
A. In Example [4.11], we have already shown that this number is
214l = 2" This reasoning gives without knowing the binomial
theorem.
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Definition 4.44. Multinomzial Counting: The multinomial

coefficient
( ' )
niy, N2, .., Ny
is defined as

105 ()00 (7))

We have seen this before in (4.27)). It is the number of ways that
we can arrange n = »  n; tokens when having r types of symbols

i=1
and n; indistinguishable copies/tokens of a type i symbol.

4.45. Multinomial Theorem:

no__ 11 .12 iy
(w14 +a)" =) iyl
11090 =+ 1p-

where the sum ranges over all ordered r-tuples of integers i1, . .., .
satisfying the following conditions:

11>0,...,5.>0, 414+19+---+1 =n.
When r = 2 this reduces to the binomial theorem.

Example 4.46. Find the coefficient of z%2=in the expansion of
(z+y+2)~

5 2 1 s 21 1
' 3 1/l1/ "2 vl atol
5!

—_—
a3 !
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